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HarMmoNIC SYNTAX OF THE TWELVE-BAR BLUES ForM: A CorpPUS STUDY
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West Virginia University

THIS PAPER DESCRIBES THE CONSTRUCTION AND
analysis of a corpus of harmonic progressions from
12-bar blues forms included in the jazz repertoire col-
lection The Real Book. A novel method of coding and
analyzing such corpus data is developed, with a notion
of “possible harmonic change” derived from the corpus
and logit mixed-effects regression models that describe
the difference between actually occurring harmonic
events and possible but non-occurring ones in terms
of various sets of theoretical constructs. Models using
different sets of constructs are compared using the
Bayesian Information Criterion, which assesses the
accuracy and efficiency of each model. The principal
results are that: (1) transitional probabilities are better
modeled using root-motion and chord-frequency infor-
mation than they are using pairs of individual chords;
(2) transitional probabilities are better described using
a mixture model intermediate in complexity between
a bigram and full trigram model; and (3) the difference
between occurring and non-occurring chords is more
efficiently modeled with a hierarchical, recursive
context-free grammar than it is as a Markov chain. The
results have implications for theories of harmony, com-
position, and cognition more generally.
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T HIS PAPER IS AN INVESTIGATION OF THE
harmonic principles active in the 12-bar blues
form as used by jazz musicians. A corpus of
blues forms taken from the standard repertoire collec-
tion The Real Book is used to ask questions about the
musical and cognitive factors underlying the variety of
harmonic structures observed in this “micro-genre.”
Answers to these questions are sought through Bayesian
comparison of logit mixed-effects regression models of
the differences between occurring and possible but non-
occurring chordal events. The results suggest that har-
monic practice in this area is more efficiently described

as deriving from root motions than chord sequences
and from hierarchical phrase structure rather than Mar-
kov chains.

The study has three principal goals. The first one is
descriptive: to validate and extend previous descriptions
of the blues form (Alper, 2005; Koch, 1982; Love, 2012;
Steedman, 1984). The model proposed here incorpo-
rates many of the same foundational properties as those
earlier descriptions. It is, however, somewhat simpler
than the previous generative model (Steedman, 1984,
1996), and is explicitly justified on the basis of compar-
isons to finite-state models.

The second goal is methodological: the study intro-
duces a novel method for working with small musical
corpora. Limiting the corpus to the harmonically rich yet
relatively homogeneous micro-genre of modern jazz
blues forms allows for the examination of harmonic prin-
ciples somewhat more complex than the diatonic harmo-
nies encountered in Western Art (“classical”) music. At
the same time, an empirically derived model of the
hypothesis space of possible chord changes allows more
theoretical insight from a smaller corpus. The robustness
of this method for basic models is tested through com-
parison with a more straightforward likelihood-based
coding of the data, following Temperley’s (2010) work.
The results suggest that the regression-based methods
proposed here converge on broadly similar conclusions,
but are able to ask somewhat more complex questions.
I hope the method will be extended to other genres,
micro or macro.

The third goal is to address overarching issues in the
structure and cognition of tonal music. These include
issues in the mental representation of harmonic cate-
gories (Tymoczko, 2005) and the level of formal com-
plexity that characterizes the human faculty for
harmonic composition (Rohrmeier, 2011; Temperley,
2011; Tymoczko, 2005). The conclusions here converge
on those reached by a variety of researchers studying
different genres of music with rather different methods:
we concur with Steedman (1984, 1996), Granroth-
Wilding and Steedman (2014), Lerdahl and Jackendoff
(1983), and Rohrmeier (2011) that harmonic syntax
involves computations of at least context-free complex-
ity. That said, a context-free model does best when it
incorporates unigram and bigram information as well.
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The remainder of this section introduces and reviews
previous research on harmonic syntax, the use of cor-
pora in the study of harmonic complexity, the blues and
jazz genres and songforms, and The Real Book. The
section A Blues Corpus reports on the creation of a blues
corpus and provides an informal validation of the tra-
ditional analysis of blues form. The section Testing
Structural Hypotheses About the Blues Form uses this
analysis to restrict the corpus to unambiguous blues
forms and compares a variety of models at different
levels of analytic and computational complexity. The
Discussion section reviews the results of these analyses
and discusses their implications for the theory of har-
mony more generally.

MUSICAL HARMONY AND SYNTAX
In most Western musical traditions, harmony refers to
a system governing which sets of pitch-classes are and
are not combined in compositional practice (roughly
the difference between chords and non-chords) and
which sequences of such chords are observed more fre-
quently, canonically, or naturally than others. There are
good introductory texts on harmony from both
a music-theoretic perspective (Kostka & Payne, 2013;
and Aldwell & Schachter, 2010, are popular university-
level texts) and a cognitive-science perspective (Patel,
2008, Chapter 5). Any system of constraints on the
sequential properties of discrete, symbolic elements
invites comparisons to linguistic syntax, and this has long
been the case for musical harmony (Bernstein, 1976;
Lerdahl & Jackendoff, 1983; Steedman, 1984; and
Johnson-Laird, 1991, are four older, influential exam-
ples). As to how similar the two systems are, there are
two broad schools of thought on the subject, which can
be characterized as “very similar” and “not very similar.”

Several researchers working on jazz and blues har-
mony have concluded that the organization of these
systems is hierarchical, recursive, and/or non-regular
(Granroth-Wilding & Steedman, 2014; Johnson-Laird,
1991; Steedman, 1984, 1996). Hierarchical in this con-
text means that entire units of music, referred to as
constituents or phrases, “inherit” their combinatoric
properties from some harmonic event contained
therein, referred to as the head of the unit. Recursive
refers to structure-building processes that can be itera-
tively applied to their own outputs. And non-regular is
a level of complexity reached by certain languages,
which require phrase-structure grammars or something
more complex to be generated and which can only be
implemented in a machine with a memory (Chomsky,
1956). These properties concern the complexity of syn-
tactic systems, and there is broad agreement in linguistics

that natural languages possess all of them (though see
Pullum, 2010, for a refutation of the mathematical
soundness of purported proofs). So to the extent that
musical genres display these types of complexity, it
suggests that they are similar in a broad way to human
languages.

Some researchers have also suggested that the
harmonic systems of Common Practice Period (CPP)
“classical” music are hierarchical, recursive, and/or non-
regular. This work includes models oriented towards
generation of harmonic structures (e.g., Rohrmeier,
2011) and towards a listener’s capacity to assign struc-
tural analyses to a musical performance (Lerdahl &
Jackendoff 1983, Lerdahl 2001). There is also some
experimental evidence suggesting that the perception
of musical tension is best modeled in a hierarchical for-
malism (Lerdahl & Krumhansl, 2007; Smith & Cuddy,
2003; though see Temperley, 2011, for a dissenting inter-
pretation of those experiments). To the extent that these
authors are correct about the formal complexity of
musical harmonic systems, it suggests those systems
may share cognitive resources with human language.

The view that musical harmony is of a complexity
more or less equal to linguistic syntax, and that princi-
ples of harmony are broadly hierarchical, is far from
universal. Other researchers argue that harmonic gen-
eralizations are local, finite-state, and/or regular.
Although there are differences in what these terms
mean, they’re all associated with languages that can be
generated by a finite-state machine with no memory
(the regular languages proper), and in particular with
the subset of such languages that produce no general-
izations over non-adjacent terminal symbols (the
strictly local languages). Pullum and Scholz (2009) give
a brief and clear overview of these differences. Pairs of
adjacent terminal elements are referred to as bigrams,
sequences of more than two are referred to as trigrams,
tetragrams, etc., and the general class of sequences are
referred to as n-grams. Tymoczko (2005, 2010) and
Temperley (2011) argue that bigram (also called first-
order Markov) models do a good job of describing tran-
sitional probabilities between chords in CPP music.
And indeed, many traditional textbook accounts of
standard harmonic progressions, such as the “flow-
chart” notation used by Kostka and Payne (2013),
implicitly describe finite-state automata, which give rise
to regular languages. These theorists conclude that the
full expressive power of a context-free grammar is far
more complex than what’s needed to characterize CPP
harmony, and that non-local dependencies of the kind
that characterize hierarchical syntactic rules don’t really
exist except for very simple ones at high levels of



musical structure (Temperley, 2011). If they are right,
then musical harmony looks fundamentally unlike lin-
guistic syntax.

CORPORA AND EVALUATION METRICS IN TONAL HARMONY

One way to adjudicate such disagreements is to look at
corpora of naturally occurring sequences in some genre
of music. This method is sometimes employed in lin-
guistic syntax as well. Several researchers mentioned
above have put together corpora and used them to argue
for one view of musical complexity or the other. The
exact form of arguments from corpora varies quite a bit
between different papers, and it’s worth taking a closer
look at how different arguments are formed.

Temperley (2009) presents a corpus consisting of 46
short excerpts from Kostka and Payne’s (1995) text-
book. He argues that the most frequent bigrams in the
corpus are predicted by local, finite-state theories of
harmony. In his 2011 paper, he makes a similar argu-
ment, but also acknowledges that this is not a formally
rigorous way of assessing the model. He points out the
importance of considering overgeneration when evalu-
ating a model: it is important to assess not only whether
things that occur are predicted by a theory, but also
whether things that don’t occur frequently are not pre-
dicted by the model. This will be very important in the
current study.

The general form of argument that involves showing
some model can assign a structural description to all or
nearly all of the chord sequences in some corpus is fairly
common in the musical corpus literature. Steedman
(1984), for instance, shows that his phrase-structure
grammar of the 12-bar-blues form can generate all of
the (small number of) blues forms listed in an instruc-
tional manual. At a larger scale, Tymoczko (2010) shows
that his finite-state model of CPP harmony can assign
a description to the vast majority of the bigrams in
a corpus of 19 Mozart piano sonatas and 70 Bach chor-
ales, better than several competing finite-state theories.

In an earlier paper, Tymoczko (2005) uses a slightly
different evaluation metric for another finite-state
model. He shows that, when trained on the bigrams
from a selection of harmonic sequences from 30 Bach
chorales, a finite-state model generates a corpus of pro-
gressions that looks a lot like the original. This suggests
that the bigrams must have contained a lot of important
information about the corpus.

Granroth-Wilding and Steedman (2014) adopt
machine-learning methods from Natural Language Pro-
cessing to show that a probabilistic context-free grammar
parser, when trained on part of a corpus of 76 harmonic
sequences from jazz lead sheets, can parse a held-out
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subset of the corpus more effectively than a competing
finite-state (hidden Markov) model. This suggests that,
while finite-state models are capable of approximating
the data in the corpus, a more complex type of grammar
does so more efficiently, or accurately, or both.

The current study has the most in common with that
of Granroth-Wilding and Steedman (GW&S). It exam-
ines jazz harmony, and applies model-selection criteria
to compare finite-state and non-finite-state models of
the same corpus. The current study uses a subgenre of
jazz harmony, however, the 12-bar blues form. And the
studies take rather different perspectives on analyzing
corpora. Most notably, while the GW&S study essen-
tially asks “what is the most accurate and efficient way
to parse unfamiliar chord sequences?” the current
model asks “what is the most plausible model for
describing, a posteriori, the most important principles
that went into generating this corpus?” Of course, one
would hope that the answers to these two questions
would be similar, and to the extent that the current
study reaches conclusions similar to those of GW&S,
it can be taken as converging evidence for the nature of
harmonic syntax.

The differences from the other studies mentioned
here are more notable, and are worth calling attention
to. One of them involves the overgeneration problem
mentioned by Temperley (2011): while it is certainly
important that models can describe those things that
occur in corpora, this can’t be taken as a convincing
argument for them unless it can also be shown that the
models fail to describe things that don’t occur in corpora.
Otherwise, the best theory would simply be one where
anything goes. Tymoczko (2005) implicitly gets at this
point, because he examines a random sample of the out-
put of his model and calls attention to some unusual
progressions there. And given the selection criteria used
by GW&S, models that assign high probabilities to infre-
quent events will be penalized. But the other studies
mentioned above do not take account of overgeneration.

A second issue involves parsimony. It is a mathemati-
cal certainty that any finite corpus can be approximated
by either finite-state or context-free models, given a suf-
ficient number of parameters (Rohrmeier, Fu, & Dienes,
2012; Tymoczko, 2010). So showing that one type of
model can approximate a finite corpus is not particu-
larly informative. The other main criterion we have at
our disposal for evaluating competing models is sim-
plicity: how efficiently models represent the informa-
tion in the corpus. The only way to make use of this
criterion is to trade off the fit of the model (how well it
captures the data) against its complexity. Tymoczko
(2010) assumes that, because context-free grammars
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(CFGs) are inherently more complex than finite-state
ones, showing that a finite-state model can approxi-
mate a corpus means that a CFG should be dispreferred.
But this depends on the specific models: while a CFG is
more complex than a finite-state model in the limited
sense of requiring a memory to implement, it could still
be true that a CFG with few parameters encodes infor-
mation as well as a finite-state model with many more
parameters. In this case, there is a sense in which the CFG
would be less complex (Rohrmeier, Fu, and Dienes, 2012,
make a similar point in the context of linguistic syntax).

Intuitively, we seek a formal model that balances the
simultaneous values of ‘correctness’ (goodness-of-fit)
and simplicity (lack of complexity). The best way to
assess fit and complexity is to use an explicit model-
comparison criterion to select between competing mod-
els. This study uses the Bayesian Information Criterion
(BIC) to compare regression models, and can be seen as
an implementation of the Minimum Description Length
approach (see Mavromatis, 2009, and Temperley, 2010,
for applications to music corpora). In this approach,
model fit and complexity are both measured in terms
of the length of the description required to specify both
data (relevant to fit) and model (relevant to complexity).
Given a certain type of prior distribution for parameter
estimates, the MDL approach to regression models is
equivalent to the current approach (Stine, 2004). There
are a variety of MDL methods, and no general consen-
sus on what types of priors are best; the current proce-
dure has the advantage of being easy to implement with
a standard software package for mixed-effects regres-
sion modeling.

Another strain of corpus modeling in music uses
methods based on cross-entropy (e.g. Conklin & Witten,
1995; Pearce & Wiggins, 2004; Temperley, 2010). This
work tends to be concerned with melody and rhythm
more than harmony, but the basic principles are the
same. Cross-entropy is, in this context, a way of mea-
suring how close the distribution of events predicted by
a model is to the distribution of events in an actual
corpus. The regression-based method used here mini-
mizes a cost function that is closely related to the cross-
entropy of the model and the corpus, so it has much in
common with the cross-entropy approach. The data
here, however, are coded rather differently than in other
studies of this kind.

A typical approach to corpora using cross-entropy
codes the surface properties of one or more melodic
voices: pitch, duration, etc. N-gram models are then fit
to the coded properties based on empirical probabilities
in the corpus, and cross-entropy is assessed with regard
to (all or part of) the corpus. Conceptually, this can be

thought of as a model of composition, in which each
parameter of the musical surface (pitch, duration, etc.)
has a characteristic probability distribution and the
composer draws events from that distribution. The
compositional model used in the current study, and
hence the coding of the data, is rather different.

The coding used here is based on chord changes and
derived from Lerdahl and Jackendoff’s (1983) theory of
reductions. The overarching idea is that the blues form
is a basic structure (referred to here as a skeleton) con-
taining an essential sequence of chords. Additions to
this basic structure occur when the composer chooses
to elaborate on or expand one of the events in the struc-
ture, according to some finite-state or hierarchical prin-
ciple of expansion. In between any two events contained
in the skeleton, therefore, a set of choices to expand or
not expand will produce a variety of chord changes. In
this study, each expansion is treated as a binary choice:
in between any two chords, there is a (possibly null) set
of expansions that occur, as well as a variety of expan-
sions that could have occurred in that location but did
not. The use of “possible expansions” that did not occur
makes these data somewhat different from the cross-
entropy-based studies cited above. The selection of pos-
sible but non-occurring expansions is derived from the
corpus itself and described in the section A Database of
Possible and Actual Songforms.

While this approach to coding the data is novel and
somewhat idiosyncratic, it has certain desirable proper-
ties. For one, it means that the data can be described
with logistic regression models, which are easy to fit,
have standard evaluation metrics, and allow modeling
of random effects such as composer and song. A second
useful property is that it allows relatively straightfor-
ward coding of parameters associated with non-finite-
state models of harmony: a CFG predicts that some
expansions are allowed and others are not. Assessing
how well these distinctions match the occurring and
non-occurring expansions in the corpus is straightfor-
ward. Finally, restricting the “attention” of harmonic
models to a limited set of possible chord changes makes
them easier to fit: if every possible outcome (chord) in
every metrical position were considered, the vast major-
ity of the data would consist of 0s, and probabilistic
models (regression or otherwise) do not perform well
under those circumstances. While there are a variety of
smoothing and other techniques developed to deal with
low-probability events in corpora, the current approach
avoids the problem altogether.

One concern is that, because the data and modeling
procedures used here are so different from standard
cross-entropy approaches, any results may be due to



idiosyncratic properties of these novel methods. While
this possibility can’t be entirely ruled out, the section
A Robustness Check shows that, for the simpler finite-
state models evaluated here, the results largely converge
with those of a more standard cross-entropy-based
approach using only occurring features.

BLUES, JAZZ, AND JAZZ BLUES

The term “blues” is used in at least three different ways:
blues genre, blues inflection, and blues form. This can
be confusing for those familiar with the term but not
familiar with the music, so I give a very brief introduc-
tion to each of them here. For more detailed historical
background on the blues, see Alper (2005), Palmer
(1981), and Lomax (1993).

The blues genre is, like most genres, not an absolute
category but a useful label for a collection of styles that
frequently mix with non-blues traditions. It is a type of
folk or popular music that arose amongst black musi-
cians in the American South sometime prior to the turn
of the 20th century. It may be related to earlier African
forms, but the historical record is rather sparse. One
well-known early 20th-century blues genre is the “coun-
try blues” (which is sometimes subdivided into regional
variations), generally involving solo acoustic guitar and
vocals. Robert Johnson, Son House, and Blind Lemon
Jefferson are good exemplars of this style, which often
incorporated elements of ragtime and non-blues folk
genres. As black workers migrated north following
World War II, the blues went with them. Urban blues
of this period often make use of electric guitars and full
bands: Muddy Waters and Howlin” Wolf in Chicago are
perhaps the two best-known performers of this period,
though Mempbhis also had a thriving blues community.
The electric blues of the 1940s and 1950s had a heavy
influence on (or, one could say, became) early rock n’
roll.

Blues “inflection” is my term for some of the stylistic
devices typical of the blues genre. This includes a wide
variety of melodic maneuvers, often based on minor
pentatonic scales with conventionalized passing tones,
pitch-bending, grace-note ornamentations, and relative
lack of sensitivity to the harmonic background of a piece
of music. This is the sense in which one might describe
a melodic gesture as a “blues lick” or a vocal perfor-
mance as “bluesy.”

Finally, blues forms are a set of strophic song-forms
that arose in the blues genre. By far the most common is
a form with 12 groupings (“bars”) of 4 tactus-level beats,
generally with triple subdivisions beneath that tactus
level. The particular harmonic and metrical properties
of this form are referred to as the 12-bar blues. At its

Harmonic Syntax in a Blues Corpus 169

most basic level, the form involves a I-IV-I-V-I progres-
sion aligned with particular metrical positions in the
12-bar structure. This is the type of blues form I'm
concerned with in this paper. It is a form that the reader
is almost certainly familiar with, even if not consciously.
The 12-bar blues form is ubiquitous in rock and other
popular genres: some famous examples include “Hound
Dog,” “Johnny B. Goode,” “In the Mood,” “Folsom
Prison Blues,” “Corrina, Corrina,” “The Ballad of John
and Yoko,” and “Should I Stay or Should I Go.”

These three meanings of “blues” are related to some
extent, but not coextensive. The blues genre almost
always uses blues inflection, but blues inflection is also
common in many other genres of music. Many of the
songs performed in the blues genre are 12-bar blues
forms, but these forms are also used in many other
genres, as the list above was meant to suggest. The
corpus developed in this study consists of blues forms,
but not in the blues genre. Instead, I examine the form
as adopted by post-war jazz musicians.

The earliest period of blues history was characterized
by frequent overlap and interchange with early jazz
music, and blues forms have been an important part
of the jazz repertoire for much of the last century. Per-
formers such as Ma Rainey and Bessie Smith in the
1920s drew freely from both traditions, illustrating the
often “fuzzy” boundary between them and suggesting
that jazz and blues genres may be better viewed as lying
on a continuum of styles. In the 1940s, jazz musicians
began to elaborate upon the blues form in ways that are
highly interesting from the perspective of harmonic
syntax. These post-war jazz blues forms will be the focus
of the corpus constructed here. We refer to the broad
style of jazz beginning in this period (often called bebop)
and dominant until the 1960s as “modern jazz,” to dis-
tinguish it from earlier “classic jazz” and the eclectic mix
of styles emerging in the 1960s and 1970s which are
referred to as “contemporary jazz.”

There are several reasons why the modern jazz blues
is useful for this type of study. One is that it clearly
involves some type of active, implicit harmonic gener-
alization on the part of performers. The rules and ten-
dencies investigated here are understood well enough
that even inexperienced jazz musicians frequently
improvise blues forms, both by themselves and in coor-
dination with other musicians in a group. These impro-
visations do not always have identical chords, but pattern
rather like variations on a theme. As such, it follows that
musicians do not only memorize chord sequences, but
acquire implicit cognitive principles that dictate what
types of chord sequences are consistent with the blues
form. Host and Ashley (2006) use experimental evidence
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1 2 3 4,5 6 7 8, 9 1011 12 1 repeat
X X X X
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FIGURE 1. An early blues-genre form, with distinctive elements boxed.
Metrical “x" marks correspond to full measures, generally in 12/8 time.

to argue that such principles are active in blues-form
perception as well. Some of these principles are discussed
in the next section.

THE BLUES FORM

The 12-bar blues form can be traced from a relatively
simple harmonic structure in early styles to ever-more-
complicated variations on that form extending to the
present. Here I briefly discuss the development of the
modern jazz blues form. All of the generalizations I pro-
pose here agree with basic descriptions in Koch (1982),
Steedman (1984), Alper (2005), and/or Love (2012). The
canonical form from early blues genre recordings, such as
Robert Johnson’s, is shown in Figure 1.

For all illustrations of musical form in this paper, T use
the Lerdahl and Jackendoft (1983) metrical grid nota-
tion familiar to linguists and cognitive musicologists,
with Roman-numeral notation for harmonies. Paren-
theses indicate optional elements. Each metrical posi-
tion in this figure represents an entire measure. Note
that while I've used traditional Western chord symbols
to represent harmony here, it is not obvious that per-
formers like Johnson are actually using the harmonic
categories of, for instance, CPP music in any straight-
forward way. The third is sometimes omitted in these
chords, the melodies performed over them do not
always clearly imply a major or minor quality, and it
may be more useful to think of the harmonic structure
as a relatively invariant complex of bass voices against
which modal melodic material unfolds.

Several features of the form in Figure 1 are not con-
sistent with jazz or CPP norms. The IV chord in mea-
sure 5 generally has an implied b7 quality, because
melodies played or sung over it often include the b3
scale degree. The IV'” chord is very infrequent in CPP,
and infrequent in jazz except as a blues inflection
(henceforth, we will refer to these flat-seven chords as
plain “7,” in accordance with jazz norms). The V-IV-I
cadence in this blues form is virtually unheard of in
non-blues jazz forms. And the non-binary 12-bar form
itself, organized into three 4-bar groups, is highly
unusual in jazz, which tends to have a preponderance
of 8-, 16-, and 32-bar forms.

1 2 3 4,5 6 7 8,9 1011 12,1 repeat
X X X %
X X % X X % X
¥ X ® X[z x x 2l ¢ @ o= [®

I7 IV I) Iv7 I7 |#7VIiI7T |17

FIGURE 2. A typical pre-war jazz blues form, based on “Billie’s Blues”
by Billie Holiday.

12 3 4,5 6 7 8 9 1011 12,1 repeat
X X X X

X X X X X X X
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FIGURE 3. A modern-jazz (post-war) blues form, based loosely on
“Blues for Alice"” by Charlie Parker.

Pre-war jazz blues performances generally featured
more typical jazz chord voicings rather than the modal
guitar accompaniment mentioned above. However,
they retained several other distinctive blues features,
making these performances relatively easy to distin-
guish from “general” jazz repertoire. A typical form
from this period is shown in Figure 2, corresponding
roughly to Billie Holiday’s 1936 recording of “Billie’s
Blues.”

One of the distinctive blues elements retained here is
the dominant quality of the I7 and IV7 chords, which
are not otherwise idiomatic in jazz repertoire. The
12-bar metrical form itself has been retained, which is
otherwise unusual in jazz. The V-IV-I cadence, however,
has been replaced here by the ii7-V7-I more typical of
jazz. This is not a universal feature of jazz blues perfor-
mances; sometimes the V-IV-I is retained.

With the partial adaptation of the blues form to jazz
harmony, the possibility of harmonic extensions and
interpolations arises. By the mid-to-late 1940s, bebop
musicians such as Charlie Parker were using general
principles of jazz harmony to fill out the harmonic
framework of the blues. Figure 3 shows a fairly elabo-
rate form used in this era, based loosely on Parker’s
“Blues for Alice” but omitting and changing some
details.

The form in Figure 3 retains the major structural
elements of the 12-bar blues form: the opening tonic,
the crucial IV in measure 5, and the cadence in mea-
sures 9-11. But elaborations drawn from the bebop har-
monic lexicon “fill in” the blues skeleton. Most notably,
the form is full of chromatic chords or modulations,
which tend to follow general root-motion principles
by downward 5th or half step, but otherwise don’t



appear to be much constrained by the overall tonality of
the piece.

The example is a fairly good illustration of principles
of modern jazz harmony (for detailed expositions see
Broze & Shanahan, 2013; Granroth-Wilding & Steed-
man, 2014; Johnson-Laird, 1991). The principles of this
genre are clearly related to CPP harmony: pieces tend to
begin and end on tonic, the local tonic tends to be
approached by perfect cadence, and root-motion tends
to proceed by downward 5th. But many of the details
differ.

While CPP music often prepares a cadential V using
a IV chord, modern jazz very rarely does so, primarily
using ii instead. In contrast to CPP harmony, chromatic
chords and modulations in modern jazz are frequent,
dense, and often target distant keys without pivot
chords or other preparation. All chords are taken to
implicitly allow for upper voices such as the 7th, 9th,
and 13th to be present in their performance; the exact
ways in which these “extensions” are included in chord
voicings is part of a complex improvisational process
known as “comping.” The principle of tritone substitu-
tion, mostly absent from CPP harmony, allows for the
function of any chord except for the tonic to be fulfilled
by a chord whose root is a tritone away. This means that
root-motion by descending semitone can substitute for
root motion by descending fifth, and makes bII7-I
a fairly standard cadence. Finally, while the major,
minor, and diminshed quality of chords is largely dic-
tated by the local key in CPP harmony, these constraints
are much looser in modern jazz. There are definite ten-
dencies pertaining to chord quality, but they are always
subject to exceptions. Taken together, these differences
mean that the notion of “key,” with all of its harmonic
entailments, is just somewhat looser in modern jazz
than in CPP music (see Shanahan & Broze, 2012, for
discussion). Nonetheless, most pieces do clearly have
a global tonic (the atonal and “free” jazz that began to
emerge in the 1960s differs in this respect).

Because of its relatively clear overarching form coupled
with complexity in terms of chromaticism, substitution,
and chord-density, the jazz blues is an excellent object
for syntactic study. That is why I have chosen it for this
project. One difficulty, however, is deciding what counts
as “repertoire” in this genre. In the next section, I
describe the source from which harmonic generaliza-
tions are drawn in this paper.

THE REAL BOOK
The Real Book is an illegal collection of “lead sheets” for
copyrighted jazz pieces that circulated by mimeograph
and under-the-counter sales from sometime in the
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1970s until the advent of digital file-sharing." It is cor-
respondingly unclear who created the collection. Musi-
cians such as Pat Metheny and Steve Swallow associated
with the Berklee School of Music appear to have been
involved (Kernfeld, 2006). There is little scholarly liter-
ature on the book, although Young and Matheson
(2000) briefly discuss it and it is frequently used as a data
source in computational studies of jazz (e.g., Anglade &
Dixon, 2008; Eigenfeldt & Pasquier, 2010). Shanahan
and Broze (2012) discuss the wider “fake-book culture”
from which The Real Book emerged.

The Real Book contains some contemporary material
from the 1970s, but its main use is as a compendium of
standard jazz repertoire from the 1930s to 1960s, often
based on show tunes from earlier eras. It corresponds in
some sense to a “canon” that all jazz musicians should
be familiar with, and so I treat it here as being broadly
representative of modern jazz.

One felicitous property of The Real Book is that it
represents pieces as lead sheets, an abstract, symbolic
form that can be easily translated into corpus data. The
lead sheet contains, in the general case, a notated mel-
ody line and harmonic structure abbreviated to the level
of chord symbols. For instance, during a stretch of
music where the underlying harmony is A minor 7,
a piano player may produce several distinct note collec-
tions in different metrical positions in a performance,
but The Real Book will notate the entire temporal inter-
val as “A-7.”

This compression creates the possibility for disagree-
ments over which chord symbol fits a performance best,
and there is a general feeling in the jazz community that
The Real Book contains “errors.” But the vast majority
of its contents are reasonably sound. There is a legal
collection called The New Real Book, published in
3 volumes by the Sher Music Company, which has
some overlap with the original bootleg version. While
this version has not been as influential in terms of rep-
ertoire, it does often have higher-quality transcriptions
than the original. Wherever one of the songs in the
corpus is contained in both versions, I've used the sym-
bols from The New Real Book.

A Blues Corpus

Both traditional (Alper, 2005; Koch, 1982; Love, 2012)
and generative (Steedman, 1984) descriptions of the
blues form agree on certain basic structural elements:

! A reviewer notes that a legal version of The Real Book is now sold by
the Hal Leonard Company. The website suggests that it may differ from
the original in both repertoire and specific details of transcription.
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the overall form is a kind of metrical/harmonic skele-
ton, with a I chord at the beginning, a IV chord on
measure 5, a return to I on measure 7, and a cadence
in measures 9-11. Further elaborations may be “built off
of” the elements in this skeleton. While these observa-
tions seem completely trivial to an experienced jazz
musician, it is worth trying to validate them on some
independent basis. That is what I attempt to do in this
section.

SELECTION CRITERIA

The first question that arises is how to choose an empir-
ical domain against which to test these hypotheses with-
out being tautological. The clearest way to identify
a blues form is to hear it and intuit that it’s a blues form.
But if those intuitions are based on precisely the har-
monic criteria just discussed, then showing that a corpus
selected in such a manner obeys those criteria is circular.
For a preliminary corpus, I instead took advantage of
the unusual 12-bar metrical pattern associated with the
form. Because this pattern is otherwise unusual in jazz,
picking all of the 12- (or 24-) measure forms in The Real
Book will result in a corpus that mainly contains blues
forms. This forms a basis for drawing harmonic gener-
alizations about the blues from a “canon” selected on
a non-harmonic basis. Once the basic structural ele-
ments of the blues have been confirmed, the corpus can
be winnowed down to exclude non-blues forms and test
specific theories of blues structure.

There are 39 pieces by 25 composers in The Real Book
containing a repeating form of either 12 or 24 notated
measures, and these comprise the preliminary corpus.
The full list is given in Appendix A. By my intuitions, 4
of these are pretty clearly not blues forms, and 5 or so
could be argued about one way or the other. The
remaining 30 or so are clearly blues forms. All 39 songs
were converted to a representation of chord roots rela-
tive to the tonic associated with particular metrical posi-
tions in the 12-bar form. 24 metrical subdivisions, each
corresponding to two beats in a typical time signature,
were sufficient to accommodate all of the chord
sequences in these pieces. These charts are also included
in Appendix A.

There were not enough data in the corpus to separate
chords by quality (e.g., 7, Maj7, -7, @7), so they were
coded only in terms of their roots. This undoubtedly
loses some information, although in the general case
chord quality is fairly unconstrained in this form. Note
that most of the hard and fast generalizations that hold
about chord quality are long-distance in nature. For
instance, the distinction between minor- and major-key
blues is not coded here. The main differences between the

two modes are that the iv chord is generally minor in
a minor-key blues, major in a major-key one; and that
the minor-key form almost always contains a bVI7
before the cadential dominant, while the major-key
form can contain either this chord or a ii of some kind.
These global considerations would not be captured by
any of the models considered here, even if chord quality
were coded. These generalizations would require a the-
ory of key constraints; we do not attempt to formulate
such a theory here.

A few chord notations from The Real Book that
seemed obviously wrong to me were changed to reflect
recordings of the pieces in question. For instance,
“Swedish Pastry” by Barney Kessel is notated with
a tonic return in measure 8, but scale degree 3 in the
bass is clearly audible in the Bill Evans recording cited as
the source for the Real Book transcription. One addi-
tional consideration was how to deal with fully dimin-
ished 7th chords. They generally “stand in” for
dominant 7th chords in this genre, with the root of the
diminished chord being the 3rd of an implicit dominant
7™ (Schoenberg, 1911, and Piston, 1941, suggest some-
thing similar can occur in CPP harmony, but this is far
from universally accepted). Because this affects the root-
motion possibilities of such sequences, fully diminished
chords were coded as having an implicit root a major
3rd below the notated root.

With this charting in place, various songs can be said
to contain or fail to contain “the same” harmonic event.
Given the coding of the corpus, this just means that, for
any given pair of songs, a chord with the same root
appears in the same metrical position. By these criteria,
the corpus contains 137 distinct harmonic events (root-
meter pairings), comprising 457 tokens. Each song con-
tained between 5 and 24 harmonic events, with a median
of 10. The next section confirms that this corpus reflects
the intuitive picture of the modern-jazz blues form
sketched in the introductory section of this paper.

DISTRIBUTION OF HARMONIC EVENTS

All accounts of the blues agree that there is an overarch-
ing schema or “skeleton” consisting of the progression
[-1V-I-V-T associated with particular metrical positions in
the 12-bar form. While the tonics and IV are fairly rigidly
associated with one specific metrical position, the V need
only be part of a cadence in the 9th and 10th measures,
but need not fall on a particular beat within that interval.
So while most of the elements in the harmonic skeleton
should appear consistently in the same position, we
expect a bit more flexibility for the V chord. Table 1 lists
the most frequently occurring harmonic events (root-
meter pairings) in the preliminary corpus.



TABLE 1. All Pairings of Chord and Metrical Position That Occur in
at Least 10 Out of the 39 Songs in the Corpus

Root Measure Frequency (out of 39 songs)

39
33
31
28
16
14
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FIGURE 4. Distribution of root motions between successive chords in
the preliminary corpus.

The five most common events in the corpus corre-
spond to the harmonic skeleton described above. The
opening tonic is most frequent, followed by the IV
chord in measure 5, the tonic returns in measures 7 and
11, and the cadential V in measure 10. The remaining
highly frequent events comprise an alternate location of
the cadential V in measure 9, the cadential dominant
preparations Il and b VI in measure 9, and a tonic return
in measure 3 that is present with some elaborations that
can occur in measure 2, notably a IV chord (in paren-
theses in Figures 1 and 2).

Forthcoming section Testing Structural Hypotheses
About the Blues Form attempts to test whether the prob-
ability of events in the corpus is better explained by
a finite-state or hierarchical model. As such, it is worth
confirming that there are strong generalizations about
root motion in the corpus, of the kind that finite-state
models have something to say about. The distribution of
root motions is shown in Figure 4.

As expected, the corpus is dominated by descending-
5th root motion, which occurs about 4 times as often as
any other configuration. The prevalence of this motion,
at 42%, is somewhat lower than the 56% reported by
Broze and Shanahan (2013) for their general jazz corpus;
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this may be due to the non-canonical features of the blues
noted in the earlier section Blues, Jazz, and Jazz Blues.
The next most common motions are descent by semi-
tone, which is the tritone equivalent of descending 5th;
and descent by 4th, which is “built into” the skeleton in
two locations. So it does appear that there are strong
tendencies for particular root motions to occur in the
corpus, and they correspond to what one might expect
based on the theory of blues form.

WINNOWING THE CORPUS

The next section (Testing Structural Hypotheses About
the Blues Form) attempts to adjudicate between various
ways of stating generalizations about the blues form. As
such, it is prudent to limit the corpus to forms that
really are blues forms. This is especially true because
evaluating a hierarchical theory will require assigning
tree structures based on the harmonic skeleton to each
form. In the absence of the skeleton, it is unclear how or
whether a blues tree structure could be assigned.

For these reasons, all songs from the preliminary cor-
pus that do not contain all of the events in the harmonic
skeleton were removed. This eliminated 9 out of the 39
songs from the preliminary corpus. Four of these appear
to me to be non-blues pieces that happen to have 12- or
24-bar forms: “Crescent” by John Coltrane, “Exercise
#3” by Pat Metheny, “Goodbye Pork Pie Hat” by Charles
Mingus (which is full of blues inflections but not obvi-
ously a blues form), and “Semblance” by Keith Jarrett.
The remaining 5 are ambiguous to some degree: “Blue
Comedy” by Joe Gibbs, “Henniger Flats” by Gary Bur-
ton, “Las Vegas Tango” by Gil Evans, “Nostalgia in
Times Square” by Charles Mingus, and “Solar” by Miles
Davis. By my judgment, several of these are pretty
clearly evoking the blues structure but altering or playing
with it in some way. Mingus and Burton are particularly
well-known for doing just this. For one of these songs,
“Solar,” the issue of whether it is a blues is unclear enough
that it is a frequent topic of conversation amongst musi-
cians and appears in the title of Pachet’s (1997) paper
“Computer Analysis of Jazz Chord Sequences: Is Solar
a Blues?” (he takes the answer to be “yes”).

One might object that throwing out songs that some
listeners may perceive as blues forms loses information.
There are two reasons why I think this is not a big
problem. First, this is an exploratory analysis and it
makes sense to examine the properties of unambiguous
blues forms before formulating a theory of fuzzy cases.
And second, it’s fairly clear what the principles are
behind such fuzzy cases: the eliminated songs seem
blues-like to the extent that they contain elements of
the blues harmonic skeleton within a 12-bar metrical
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template: all of the ambiguous cases contain at least 3 of
the 5 skeletal events. While this is surely not the only
criterion that makes a song-form sound “bluesy”, it suf-
fices to explain all of the current examples. My answer
to the question of whether “Solar” is a blues, therefore,
would be “kind of”.

Testing Structural Hypotheses About the
Blues Form

In this section I compare several theories of the blues
form. The starting point is the narrower corpus made by
eliminating songs that don’t contain all of the events in
the harmonic skeleton. That final corpus contains 30
songs by 21 composers, with 333 tokens of 98 distinct
types of harmonic event. The following subsections: 1)
explain how the database of harmonic information was
coded from this corpus; 2) describe the phrase-structure
grammar that was used to assign tree structures to the
songs in the corpus; 3) describe the statistical techniques
that were used to fit and compare models of the corpus;
4) report on the results of several comparisons of inter-
est; and 5) investigate the robustness of the novel meth-
ods used here.

A DATABASE OF POSSIBLE AND ACTUAL SONGFORMS

The approach taken here to comparing models is to
assess how well they do at describing differences
between things that occur and things that don’t occur
in particular blues pieces. For instance, is the difference
between occurring and non-occurring chord changes
best explained by preferred metrical positions for
changes, by preferred root relationships between
sequences of two chords, or by a hierarchical grammar
that allows some structures but not others? This design
allows for assessment of both the descriptive adequacy
and the parsimony of potential theories.

It also creates some practical difficulties, however:
every blues form is associated with some events that
occur, but also with an infinite variety of events that don’t
occur. To harness this negative evidence for human or
machine learning requires a computationally tractable
notion of “possible event that didn’t occur.” The
approach taken here infers such a notion from the corpus
itself: any chord that occurs in a particular rhythmic
position somewhere in the corpus is considered to be
possible at that rhythmic position in any other song in
the corpus. This gives us, in effect, a universe of possible
harmonic events to compare to the actually observed
harmonic events in any given piece.

Consider, as an illustration, the harmony of John Col-
trane’s “Equinox,” shown in Figure 5.

1 2 3 4,5 6 7 8 9 1011 12 1 repeat
X X X X X X X

X X X X|X X X |[Xx||lx x x X |x

i iv i | VITV7 i

FIGURE 5. Form of John Coltrane's “Equinox” with empty metrical
position highlighted.

In the 8th measure, marked with a rectangle here, no
harmonic change occurs. The tonic harmony from the
preceding measure simply continues. But in “Pfrancin,”
by Miles Davis, a bIII7 chord appears in this metrical
position, and in “Au Privave,” by Charlie Parker, a (#)iii7
appears here. The models considered in this study ask
why these chords, or any others found in this metrical
position in other songs, didn’t appear in “Equinox.”
Various models attempt various ways of answering this
question. One naive baseline model tests the idea that
the chords in question didn’t appear in “Equinox”
because no particular chord change is very likely in this
metrical position. This model assigns to the possible
events the probability of occurring that is associated
with this metrical position across the entire corpus,
regardless of the specific chord changes at issue.
A finite-state model instead tests the idea that the roots
of these non-occurring chords would create unlikely
transitions (bigrams) to or from surrounding chords,
in this case the preceding i and/or the following VI17.
This model assigns to each possible event at issue the
probability associated with its root following a tonic
root and/or preceding a root eight semitones above the
tonic. Finally, a CFG model tests the idea that these
possible events didn’t occur because they would be rel-
atively deeply embedded in a tree structure for the song,
or could not be assigned a structural description at all by
the CFG under consideration (which will be described
in the next section). The particular CFG developed here
would in fact assign a structural description to the III7
chord, as a dependent of the following VI7, but would
not be able to assign a description to the (#)iii7 chord.

To code the notion of “possible harmonic event,”
every song in the corpus was divided into occurring
positions and interchord intervals (ICIs). The ICI is the
collection of metrical positions in between each pair of
successive occurring harmonic events. In Figure 5, for
instance, the first occurring position in “Equinox” is the
downbeat of measure 1, the second occurring position is
the downbeat of measure 5, and the first ICI in is the
collection of all metrical positions following the down-
beat of measure 1 and preceding the downbeat of mea-
sure 5. For each ICI, a set of possible events that could
have occurred in that ICI was computed by examining
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TABLE 2. Database entries for the occurring VI7 chord and the non-occurring 1117 chord in ‘Equinox’

Song Comp MetPos Root PreRMot FolRMot Attach Embed LDAttach Occur
Equinox JohCol 14 3 9 7 1 2 0 0
Equinox JohCol 16 8 4 1 1 1 0 1

Note: MetPos = metrical position; Pre and FolRMot = preceding and following root motion; Attach = attachable by CFG; Embed = depth of embedding in CFG tree;

LDAttach = long-distance attachment in CFG tree.

all of the events that occurred within that ICI anywhere
in the corpus. Chords that shared a root with the pre-
ceding occurring event (i in this example) or the follow-
ing one (iv) were excluded from consideration, as there
is no principled way to distinguish between repeated
chords and prolonged chords in this type of corpus.
And particular chord roots that appeared in more than
one metrical position within the ICI were only counted
once. For this example, the corpus contains 10 chord
roots that appear in this ICI in other songs, which is
actually all possible roots except scale degrees 1 and 4.
This rich variety of possible roots is due to the large size
of this particular ICI, which spans three and a half full
measures.

The same coding of possible events was done for each
of the occurring positions as well. In the particular case
we’ve been considering, every song in the corpus
contained a tonic chord on the downbeat of the first
measure and a subdominant on the downbeat of the
fifth measure, as these are part of the skeleton that
served as a selection criterion. So there are no alterna-
tive possibilities in these positions. In other positions,
however, such as the downbeat of measure 9, the corpus
did contain alternative chords, and these are coded as
possible but non-occurring for “Equinox.”

The resulting database is a record, given a universe of
possible harmonic events, of which ones do and do not
occur in each of the songs in the corpus. The purpose of
this study is to ask which factors best explain the differ-
ence between occurring and possible but non-occurring
events. For this purpose, a large range of different kinds
of factors were coded for each event. An example for the
two events in question is shown in table 2.

Basic factors included the metrical position of the
event and the chord root relative to the global tonic.
For finite-state models, a variety of transition-related
factors were coded: the preceding and following occur-
ring chords, and the distance in descending semitones
between the event in question and the preceding and
following occurring chords. For CFG models, a variety
of graph-structural (tree) factors were coded: whether
the event in question could be attached into the tree
structure for the song in question, what the depth of

embedding below the harmonic skeleton level would be
for the attachment, and whether the attachment in
question would be to a neighboring (“local”) occurring
chord or to a non-adjacent (“long-distance”) occurring
chord. Each of these predictors, in separate columns in
table 2, were incorporated into one or more models of
the last column in table 2, a record of whether the event
in question actually occurred.

The CFG factors mentioned above all require a proce-
dure for assigning tree structures to blues forms. The
next section describes the CFG used for this purpose,
which is related to Steedman’s (1984, 1996) model but
differs from it in several ways.

A MINIMAL CFG FOR THE BLUES
The discussion in this paper has been frequently con-
cerned with the issue of overgeneration and sensitivity
to negative evidence. This concern is especially acute
when it comes to recursive CFGs, because this type of
model is tremendously powerful, in the sense of gener-
ating huge numbers of structures from fairly simple
rewrite rules. So the first criterion for the CFG to be
developed here is that it contain as few rules as possible.
In the first two sections of this paper, the jazz blues
form was characterized by (1) a harmonic skeleton con-
sisting of a I-IV-I-V-I progression anchored to particu-
lar metrical positions in a 12-bar structure, and (2)
interpolation between those skeletal events using the
principles of modern jazz harmony, which favor root
motion down by perfect 5th and down by semitone (the
tritone-substitution equivalent of descending 5th). The
Steedman (1984) grammar largely agrees with this
description: Rule 0 (Steedman 1984, p. 61) introduces the
harmonic skeleton, rules 2 and 3 introduce left-headed
and right-headed constituents with descending-5th root
motion, and rule 4 introduces tritone substitution. The
remaining rules deal with subtleties of chord quality
(which is ignored in the current study) or with less fre-
quent progressions. Some of these progressions, when
formulated as general rules, appear to me to overgenerate
unlikely blues forms; for instance, rule 5 allows any chord
to have a rightward expansion of two chords that move
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(1)  Piece — I VA v

2) X-— X ESD(X)

(3) ESDX)— X  ESDX)

(C))] X — Ton(X)

FIGURE 6. A minimal CFG for the modern-jazz blues form. ESD(X) =
extended subdominant of X (see text).

occasionally in the current corpus, it is always associated
with a I chord and the following chords can always be
construed as dependents of later chords instead of the I
itself. For this and related reasons, the final CFG model
used here consists only of the rules in figure 6 and the
notion of Extended Sub-Dominant (ESD) that they
incorporate.

Roman numerals in Figure 6 refer only to chord roots
without regard to quality, so that the numeral I, for
instance, may refer to a major or minor chord. X refers
to any chord root; it is a variable. The ESD function is
defined for any chord X as a chord whose root is a fifth
below X (the subdominant), or the tritone equivalent of
the subdominant, whose root is a semitone below X.
Rules (2) and (3) allow left- and right-headed versions
of such root motions. A slightly different way of stating
this is that rules (2-3) allow any chord X to be followed
by a dependent that is an ESD of X, or to be preceded
by a dependent of which X is an ESD. Rule (1) encodes
the skeleton of the blues form. Rule (4) rewrites non-
terminals as terminals.

While this grammar can generate a large (in fact, infi-
nite) number of chord sequences, it is still in some ways
quite restrictive. Most notably, it is incapable of assigning
any structural description to surface root motions other
than the ESD one unless the two chords in question are

(a) Piece (b)

VI7T V7

at the boundary between two larger constituents or one
of them is a dependent of a non-surface-adjacent chord.
Despite the paucity of phrase types allowed by this
grammar, however, it provides parses for a fairly com-
plex range of blues forms. Figure 7 below shows one
relatively simple and one relatively complex example;
parse trees for all forms in the corpus are included in
the supplementary materials for this paper.

In the simple example of “Equinox” (7a), every event
in the piece is part of the skeleton assigned by rule (1)
except for the pre-cadential VI7 chord. This chord is
licensed as a dependent of the cadential V by rule (3),
because V is an ESD of (b)VI. In the more complex
example of “Au Privave,” the skeleton is present on
the horizontal immediately below “Piece,” and several
of these skeleton events have their own dependents.
The vast majority of all the expansions in this tree are
licensed by the right-headed rule (3); the only exception
is the IV — IV b VII in mm. 5-6; the bVII is an ESD of
the IV chord, and is licensed as a dependent by left-
headed rule (2).

Several aspects of these structures are worthy of com-
ment. The “Piece” level is represented as a flat structure
here, with all skeletal harmonic events being immediate
dependents of that level. This corresponds to a stipula-
tion within the theory advanced here that the blues form
cannot be derived from more basic principles of jazz
harmony: it is a memorized structure that derives from
partially arbitrary and accidental history and cultural
conventions. That said, while the blues form is not
entirely explicable in terms of jazz harmony, it is also
clearly not entirely arbitrary. Many of the chords and
transitions in the blues skeleton are possible in jazz, and
the cadence is a standard ending for almost every piece
in modern jazz. I would speculate that the blues form
became a staple in jazz repertoire because it is distinct

FIGURE 7. Tree graphs of the structures assigned by the CFG to (a) John Coltrane's “Equinox” and (b) Charlie Parker's “Au Privave."



enough from standard jazz practice to enhance variety
in the genre, but not so distinct from genre norms that it
would be impossible to assimilate it into the tradition.

The corpus contains some examples of chords that
cannot be assigned a structural description by the CFG
introduced here. For instance, the A section of “African
Flower” by Duke Ellington contains a biii7 chord in
between the measure-5 subdominant and the tonic
return in measure 7. Such chords were coded as “unat-
tachable”; the most straightforward prediction of the
CFG model is that they should not be licensed; the prob-
abilistic implementation in terms of regression models
used here would then predict they should be infrequent.

Finally, note that this grammar (and all others con-
sidered here) does not explain the alignment of har-
monic material with absolute metrical positions (e.g.,
“IV chord appears in on the downbeat of measure 5).
I take constraints on metrical alignment to be a part of
the memorized schema for the blues and not something
to be explained by the harmonic system.

With all songs in the corpus assigned a tree structure,
it is possible to code the structural factors listed in the
section A Database of Possible and Actual Songforms.
For instance, the VI7 in “Equinox” above would be
coded as attachable, locally dependent, and 1 level of
embedding down from the skeletal tier. The second
tonic chord in “Au Privave” would be coded as attach-
able, non-locally dependent, and 1 level of embedding
down from the skeletal tier. A variety of non-occuring
but possible events, according to the criteria in the sec-
tion A Database of Possible and Actual Songforms, were
coded for the position that they would occupy if they
had occurred. The full database of possible events in the
corpus is included in the supplementary materials,
along with tree-structure representations of each song.
The next step is to compare various models’ character-
ization of the difference between occurring and possible
but non-occurring events.

MODELING AND MODEL-COMPARISON

Given that the outcome of interest here is a binary one,
occurrence or non-occurrence, I use logistic regression
to examine the effect of various factors on that outcome.
In logistic regression, the log odds (or logit) of some
outcome occurring is modeled in terms of a set of inde-
pendent variables. The current models contain two
kinds of variables. Fixed effects are variables that are
systematically varied across a predetermined number
of levels; in the current study, these include the struc-
tural and root-motion factors discussed earlier (A Data-
base of Possible and Actual Songforms). Random effects
are variables whose levels are randomly sampled from

Harmonic Syntax in a Blues Corpus 177

some larger population of interest. Here, these would
include “song” and “composer”; the corpus doesn’t
include every modern-jazz blues form, nor every com-
poser of such forms. Instead, the corpus includes a hope-
tully representative sample determined by the authors of
The Real Book. The best way to incorporate fixed and
random effects into a single model is with mixed-effects
regression; Jaeger (2008) and Quené & van den Bergh
(2008) give excellent and accessible overviews of mixed-
effects logistic regression models.

The models here were implemented with the Ime4
package (v. 1.1-10, Bates et al., 2015) in the statistical
platform R. All structural, chord root, and metrical fac-
tors were coded as fixed effects, while composer and
song were coded as random effects. This structure
allows us to test whether the fixed effects of primary
interest here robustly affect the probability of chords
occurring across different levels of random variables.
Because the song and composer random effects did not
end up explaining significant amounts of variance in the
models where both were included, and including more
random variables makes model-fitting more computa-
tionally difficult and time consuming, only the effects of
song were retained in the final models reported here.

Once various models are fitted to the data in the
corpus, they need to be compared. Given that the blues
corpus created here is finite in size, it will be possible to
approximate that corpus using either a finite-state
model or a CFG one. This is a mathematical necessity:
in the most extreme case, we could simply give either
a finite-state or CFG model one parameter for every
single occurring and non-occurring event in the corpus
and they would fit the data perfectly. This would be true
even if the finite corpus were full of recursive center-
embedding structures (it is not), as long as they’re finite.
A more relevant question is whether the regularities in
the corpus are more accurately or efficiently expressed
by some models than by others. And answering that
question requires a way of comparing models of differ-
ent types.

The best criterion for comparing different kinds of
models of the same data is a fairly complex and inter-
esting question in and of itself. The choice made here is
to use the Bayesian (or Schwarz) Information Criterion
(BIC). Kadane and Lazar (2004) and Vrieze (2012) give
overviews of the BIC and compare it to other criteria.
All literature on the BIC contains a fair bit of mathe-
matics that is impenetrable to non-experts (myself
included), but the overarching concepts involved in the
model-selection process are relatively clear. As noted in
the section Corpora and Evaluation Metrics in Tonal
Harmony, the BIC can be viewed as an application of
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Minimum-Description-Length methodology to model
selection, where a particular kind of prior over para-
meters is assumed.

The BIC is inversely proportional to the Bayesian
posterior probability of some model; that is, the proba-
bility that the model is correct given the data that have
been observed. Selecting a model using the BIC involves
looking for the model with the lowest BIC value, thus
maximizing the posterior probability amongst the mod-
els being considered. The posterior probability, in Bayes’
equation, is proportional to the probability of the
observed data given the model (the likelihood) and the
prior probability of that model. In cases like the current
study, where it is not entirely clear what the prior prob-
ability of any model is, the BIC in effect uses the number
of free parameters in the model in place of priors: more
complex models are less probable a priori, all else being
equal. Note that the “observed” data here include occur-
ring chords but also non-occurring possible chords as
described in the section A Database of Possible and
Actual Songforms.

This selection process will reward models for good-
ness of fit (expressed in terms of likelihood) and penal-
ize models for including many parameters. This is
precisely what is required for an exercise like the current
one, where it is unclear not only which parameters are
the most relevant to blues harmony, but also how many
parameters are optimal for describing the system.

The BIC differs from the related Akaike Information
Criterion (AIC) in how sharply it penalizes overfitting.
In general, the BIC has a much larger penalty for extra
parameters than the AIC and tends to favor smaller
models. This is because both criteria incorporate esti-
mation uncertainty, while only the BIC incorporates
parameter uncertainty. In conceptual terms, one can say
that the AIC may be better for predicting future out-
comes, because it allows for relatively subtle parameters
to enter the model, but the BIC is better for describing
the most meaningful factors that went into generating
the observed outcomes. Because the purpose of this study
is to discover which parameters are most useful for
describing the blues form, the BIC was used here. All
of the model comparisons reported with BIC values here,
however, were also run with the less stringent AIC for the
sake of completeness. Qualitative patterns of results were
very similar, in particular the comparisons between fam-
ilies of models, although a few of the family-internal
results came out differently with the AIC.

EVALUATING MODELS OF THE BLUES
This section reports on the construction of logit mixed
effects models of the harmonic database described in

sections A Blues Corpus and Testing Structural Hypothe-
ses About the Blues Form, and Bayesian model selection
from amongst those alternatives. The next four subsec-
tions: 1) establish a “baseline” model with no information
on harmonic sequences, to ensure that more sophisti-
cated harmonic models are actually doing something
useful; 2) select an optimal finite-state model, adjudicat-
ing between different notions of harmonic categories and
different orders of Markov model; 3) select an optimal
CFG-based model, adjudicating between various struc-
tural criteria (depth of embedding, locality of dependen-
cies, etc.) for describing the difference between more and
less likely events; and 4) report on a more conservative
test of the hypothesis that CFGs represent the corpus
more efficiently than finite-state models. More detailed
summaries of the optimal models from each section are
included in the supplementary materials.

Rhythmic and chordal baselines. Before even talking
about principles of harmonic combinatorics, it makes
sense to investigate more basic kinds of information that
affect the probability of a chord occurring: the root of
the chord (relative to tonic) and its metrical position.
Some chords are more frequent than others in this
genre, due to a combination of appearing in the oblig-
atory harmonic skeleton of the blues form, harmonic
stability, and/or proximity to the tonic. On all three
counts, we would expect tonic chords to be most fre-
quent, followed by subdominant and dominant chords,
and that in and of itself constitutes information. It is
also a fact that some metrical positions are obligatorily
filled by a harmonic change in the form, while others
are not, and therefore events that take place in stronger
metrical positions are more likely.

Models based on either or both of these two para-
meters do not include any direct information about
motion from one chord to another, yet they capture
non-trivial information about the corpus. In this sec-
tion, an optimal model incorporating these factors is
selected. Based on descriptions of the blues form, it
would be quite surprising if one of these models turned
out to be the best. If models in subsequent sections,
which include information on harmonic motion, do not
improve on this “baseline” model, we can conclude that
either something is wrong with the corpus (e.g., it
doesn’t contain enough data to form meaningful gen-
eralizations) or that harmonic generalizations about the
blues form are “noisy” enough that it is best to state
them in terms of a list of chords that are more likely
to occur and metrical positions that are more likely to
host a chord change. On the other hand, if the baseline
model is improved by adding information about



TABLE 3. Comparison of Baseline Models Using Only Metrical
Position and/or Chord Root

Model Fixed Effs Log Lik. BIC
Rt only 12 —782 1663
Pos only 24 —786 1761
Rt + pos 35 —719 1710
Rt * pos 97 —670 2082

Note: Fixed Effs = number of fixed effects in the model; Log Lik. = log likelihood;
BIC = Bayesian Information Criterion. Rt only = root relative to tonic; Pos only =
metrical position of changes; Rt + Pos = both types of information; Rt*pos = every
root in every metrical position.

harmonic sequences, we can conclude that the corpus
contains sufficient data to produce meaningful general-
izations about combinatorics and that relationships
between chords are a crucial part of the theory of blues
form.

Four rhythmic and chordal candidate models were
fitted. “Rt only” uses only the chord root of an event
to predict probability of occurrence; this corresponds to
the hypothesis that some chords are more frequent than
others, and there are no other generalizations to be had.
“Pos only” used only metrical position to predict prob-
ability of occurrence; this corresponds to the hypothesis
that any given chord change is more likely in some
metrical positions than others, but the nature of those
changes doesn’t really matter. “Rt + pos” includes both
kinds of information; this corresponds to the hypothesis
that there are preferred chords and preferred metrical
positions for chord changes, but the nature of the
changes doesn’t really matter. “Rt * pos” includes inter-
actions between chord root and metrical position; this
corresponds to the hypothesis that each chord has met-
rical positions where it is more or less likely to occur,
and that chords may differ from each other in this
respect. This last model is fairly close to just listing every-
thing that occurs and doesn’t occur in the corpus. The
performance of these four models is shown in Table 3,
with the number of fixed effects in the model, log likeli-
hood, and BIC score.

Out of these models, the BIC suggests that Rt only is
the best choice. While the two models with both har-
monic and rhythmic information fit the data better, as
indicated by their log likelihoods, they do so using far
more parameters, and so are classed as inferior by the
stringent BIC. A more detailed look at Rt only shows
that scale degree 1 is by far the most common root, with
all other roots being substantially less frequent. Scale
degrees 4 and 5 are the next most frequent roots, with
scale degree (major) 7 being the least frequent. Exami-
nation of Rt + pos shows that, after taking into account
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chord roots, there is not much left for metrical position
to explain, and so a large number of metrical parameters
in this model are “wasted,” in the sense of not substan-
tially improving fit. Finally, Rt * pos is wildly overpar-
ameterized: 191 parameters had to be dropped from this
model because the corpus does not contain information
on every chord change appearing in every position. The
resulting model contains a few highly useful parameters
alongside a large number of parameters whose esti-
mated magnitudes are considerably smaller than the
model’s uncertainty about that estimate. This is a clear
sign of overfitting.

Given these results, Rt only, which contains the overall
(“unigram”) frequency of each chord root, was chosen
as the optimal baseline model. In the following tests, it
was compared to models that embody more complex
and interesting hypotheses about harmonic sequences.

Finite-state models. Three broad questions were
explored in the attempt to find an optimal finite-state
model of the corpus: (1) Are sequences better described
in terms of combinations of individual chords or in
terms of the relationship between the roots of succes-
sive chords? (2) If the root-motion alternative is pre-
ferred, are root motions best described with or without
tritone substitution/equivalence? (3) Is a first-order
Markov (“bigram”) model, one that only considers the
immediately preceding or following chord, sufficient?
Or do higher-order models (those that consider more
than one preceding or following chord) perform better?
Separate comparisons were conducted for questions (1)
and (3), with tritone equivalence (2) examined in both
comparisons.

For the first root motion comparison, four types of
models were fitted. Uni is the unigram (root-only) base-
line carried over from the previous comparison; it
examines only chord roots without considering motions
from one chord to the next. RM considers only the
interval formed by roots of successive chords; it corre-
sponds to the hypothesis that root motion determines
the probability of event occurrence and which roots are
involved doesn’t matter. Uni + RM considers both types
of information; it corresponds to the hypothesis that
chords have different characteristic frequencies, root
motions have different characteristic frequencies, and
neither type of information can be reduced to the other.
Uni * RM assigns a separate probability for each chord
root to participate in each type of root motion; it corre-
sponds to the hypothesis advanced by Tymoczko (2005)
for CPP harmony that “diatonic triads on different scale
degrees each move in their own characteristic ways.”
This essentially means that individual chords’ harmonic
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TABLE 4. Comparison of Unigram, Bigram, and Scale-degree
Models With and Without Tritone Equivalence

Model Fixed Effs Log Lik.  BIC
All RM Uni 11 —782 1663
RM 11 —768 1634
Uni + RM 22 —713 1609
Uni * RM 124 —632 2220
Trit. Equi.  Uni (repeat) 11 —782 1663
RM 6 —796 1653
Uni + RM 17 —719 1582
Uni * RM 72 —659 1880

Note: Uni = root relative to tonic; RM = root motion between successive chords;
Uni+RM = both types of information; Uni*RM = different root-motion parameters
for each different root (“scale degree”).

Comparison of bigram models
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FIGURE 8. BIC scores for the various bigram models tested.

properties are idiosyncratic enough that it is not
“worth” trying to generalize across them.

Each of these types of models except for Uni were
fitted both with and without tritone equivalence of root
motion coded into the model, for a total of seven mod-
els. The versions with tritone equivalence used only one
parameter to refer to two distinct root motions that are
tritone equivalent, e.g., motion down by 5th and down
by semitone. These models therefore have fewer para-
meters than those that include all root motions; the
relative cost of the information lost by generalizing this
way compared to the gain in simplicity will be adjudi-
cated by the BIC. The results of the comparison are
shown in Table 4 and Figure 8.

In the groups with and without tritone equivalence,
the Uni + RM model, in bold in Table 4, emerges as
optimal. And the best version of that model-type is the
one with tritone equivalence. Although differences here
may appear small due to the large range of the chart,
they are actually rather large in BIC terms and consti-
tute very strong evidence against the higher-valued
models (Kass & Raftery, 1995). The simpler models
incorporating root-motion perform better than the

baseline unigram model; this is reassuring, because it
means that information about chord sequences is useful
in describing the corpus. This converges on a result from
Broze and Shanahan’s (2013) study, which uses a very
different corpus and coding scheme: root-motion is
found to be superior to unigram factors in tracking
changing norms across time in the jazz community from
the 1950s onward.

While the Uni + RM model performs best in both
groups, its advantage over a simple RM model appears
to be markedly larger in the group with tritone equiva-
lence. This probably indicates that, in the absence of
unigram frequency information, extra parameters
assigned to root motions can account for some portion
of the variance associated with particular roots. Once
unigram information is added into the model, however,
distinguishing between tritone-equivalent motions no
longer contributes as much independently useful infor-
mation to the analysis. This is consistent with the idea
that root-motion constraints are more or less uniform
across roots, but that each root is associated with a par-
ticular frequency, perhaps related to its tonal stability.

Finally, the two scale-degree models that include
interactions are far too complex for the data being mod-
eled, and neither of them actually converged within the
default iteration limit set for the lme4 package. There
are many cases in both models where the estimates of
individual effects are orders of magnitude smaller than
the uncertainty associated with those estimates. An
intuitive way of putting this is that there are so many
parameters in these models, the fitting algorithm
“doesn’t know” which bits of variance in the data to
attribute to which parameters. This is a paradigm exam-
ple of overfitting.

This comparison suggests that information about
root motion is highly informative for the theory of
jazz blues harmony. The next comparison asked
whether considering the motion between two successive
roots (bigrams) is sufficient, or whether considering
sequences of three successive roots (trigrams) would
be even better. For this comparison, the optimal root
motion plus root frequency models from the previous
comparison were carried forward. Those models were
based on the root motion from the preceding chord to
the one being modeled, and so are referred to as PRM
models. These were tested against PRM + FRM, which
considers both the preceding and the following root
motion (in addition to unigrams); these models are
intermediate between a bigram model and a full trigram
one. The PRM * FRM models consider each combina-
tion of preceding and following root motion; these cor-
respond to a full trigram model. The comparison



TABLE 5. Comparison of Bigram, Mixture, and Trigram Models With
and Without Tritone Equivalence

Model Fixed Effs LogLik. BIC
All RM PRM only 22 —713 1609
PRM + FRM 33 —672 1610
PRM * FRM 137 —621 2297
Trit. Equi. PRM only 17 —719 1582
PRM + FRM 23 —682 1554
PRM * FRM 57 —648 1743

Note: PRM only = root motion between each chord and preceding chord; FRM =
root motion between each chord and following chord; PRM*FRM = interactions
between preceding and following root motions (trigrams).

Comparison of N-gram models
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FIGURE 9. BIC scores for the various n-gram models tested.

between models with and without tritone equivalence
was retained here, to test the robustness of the previous
result. Model performance is shown in Table 5 and
Figure 9.

Once again, models with tritone equivalence generally
perform better than those without. For the models with-
out tritone equivalence, the bigram PRM and “mixture”
PRM + FRM models are virtually tied. For the models
with tritone equivalence, PRM + FRM performs much
better, and has the lowest overall score of any finite-state
model tested so far. This again suggests that some
amount of information is lost when tritone-equivalent
root motions are coded as the same. The “extra” bigram
information from following root motion helps (more
than) make up for this loss in the winning PRM + FRM
model, less so in the PRM only model.

The Ime4 package had trouble fitting both of the tri-
gram models, and neither converged, although they got
close enough to give a ballpark idea of how they per-
formed. The model without tritone equivalence and
with unigram parameters could not be fit at all, so the
results reported in the 3rd row of Table 4 are for a model
without unigram parameters. It is grossly overparame-
terized even in the absence of unigrams. The tritone-
equivalent model fared somewhat better, but is still
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heavily penalized for overfitting compared to the sim-
pler models. Inspection of the tritone-equivalent PRM *
FRM model suggests that some of the “waste” might be
coming from interactions involving the start-state and
end-state of the form. These are parameters that might
describe, for instance, the probability of root motion
down by 4th to the final element of a piece; that ele-
ment’s finality would be coded as a transition to the
end-state. The model was refit eliminating start-state
and end-state interactions to give it the best possible
chance. This version performed better (48 parameters;
LL = —656; BIC = 1691), but still was far inferior to the
simpler models.

The optimal finite-state model with respect to this
data, then, is one that assigns probabilities of occurring
to events based on their inherent unigram frequencies,
the root motion formed with a preceding chord, and the
root-motion formed with the following chord. In the
next section, we select an optimal CFG-based model.

CFG-based models. The first comparison examined
minimal CFG-based models that take into account the
possibility of assigning a structural description to pos-
sible events, but not more detailed information such as
depth of embedding. The utility of unigram information
was also tested here; each model was fitted with and
without unigram parameters.

LA models code only whether an event can be
attached locally (to an adjacent event) or not; this cor-
responds to a constrained CFG that mixes left-
branching and right-branching rules but only allows
recursion for one or the other terminal element in each
rule. It is conceptually similar to the PRM +FRM model
from the previous section on finite-state models, though
not equivalent. GA (for “general attachment”) models
code whether an event can be attached locally or long-
distance, but do not distinguish between the two types
of attachments; this corresponds to a “classic” CFG. LA
+ LD models distinguish between, unattachable, locally
attachable, and long-distance attachable events; this cor-
responds to a CFG where there is some cost associated
with long-distance attachment. In the machine analogy,
this could be expressed as a penalty for using the push-
down stack. Results are shown in Table 6 and Figure 10.

Note that the range of the chart in Figure 10 is much
smaller than the previous ones, because there are no
grossly overfitted models here. As was the case with
finite-state models, all models with unigram frequency
information outperform those without it. And within
each group, the best model is one that distinguishes not
only “attachable” events from unattachable ones, but also
locally from non-locally attachable ones. Long-distance
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TABLE 6. Comparison of Two Context-free Models Without Stack
Penalty and One With Penalty, With and Without Unigram
Frequency

TABLE 7. Comparison of Two Context-free Models Without Stack
Penalty and One With Penalty, Using Full, Intermediate, and Minimal
Depth-of-Embedding Information

Model Fixed Effs Log Lik. BIC Model Fixed Effs ~ Log Lik. =~ BIC
No uni LA 1 —753 1530 LA DOE Full 18 —661 1473
GA 1 —754 1531 DOE Four 16 —663 1462

LA+LD 2 —741 1511 DOE Two 13 —665 1444

W/ uni LA 12 —674 1455 GA DOE Full 18 —658 1467
GA 12 —675 1456 DOE Four 16 —660 1456

LA+LD 13 —664 1442 DOE Two 13 —661 1436

LA+LD DOE Full 19 —651 1461

Note: LA = locally attachable vs. not; GA = locally or long-distance attachable vs. DOE Four 17 —653 1450
not; LA + LD = locally attachable vs. long-distance attachable vs. unattachable. DOE Two 14 —656 1432

Comparison of simple CFG models
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FIGURE 10. BIC scores for the various pseudo-CFG-based and CFG-
based models tested.

attachments are more likely than unattachable events in
these models, but less likely than locally attachable ones;
this is consistent with the idea of a penalty for using
memory. The LA and GA models correspond to grouping
long-distance attachments with unattachable events and
grouping them with locally attachable events, respec-
tively. The fact that there is virtually no difference
between these model types means that the probability
of long-distance attachment is not notably more different
from that of local attachment than it is from unattachable
events, so either grouping loses information and neither
is clearly superior to the other.

An important thing to note here is that all of these
models perform substantially better on the BIC than the
best finite-state model considered in the previous sec-
tion (which had a BIC of 1554). In terms of its absolute
fit to the data (expressed as log likelihood), the optimal
LA + LD model with unigrams is surpassed only by the
overfitted trigram and scale-degree models considered
in the finite-state comparisons.

The models considered so far do not make use of the
depth-of-embedding (DOE) information coded into the
database. The next set of comparisons attempt to
improve the CFG model by determining whether DOE

Note: DOE full = all depth-of-embedding parameters; DOE four = four most
effective embedding parameters; DOE two = distinction between least embedded
level (“skeleton”) and all other levels.

Comparison of CFG-with-DOE models
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FIGURE 11. BIC scores for the various depth-of-embedding models
tested.

affects probability of occurrence, and if so, how many
distinctions should be made along these lines. The max-
imum DOE below the harmonic skeleton in the corpus
is 6, and DOE Full models distinguish between all 6
levels (7 if the skeletal level is counted) using difference
coding. DOE Four models distinguish 4 levels, collaps-
ing together data from the deepest levels 4-6, which
were rather sparse in the corpus. DOE Two models dis-
tinguished only between the skeletal level and all deeper
levels. These comparisons were crossed with the local
vs. long-distance comparisons. Results are shown in
Table 7 and Figure 11.

As before, models that distinguish long-distance
attachment from both local attachment and unattach-
able events do best. Depth of embedding appears to add
little information to the models except for the distinction
between events in the harmonic skeleton and everything
else. The optimal model out of those considered here is
the DOE Two model, which distinguishes between unat-
tachable events (very rare), locally attachable events
below the level of the skeleton (more common), and



events in the skeleton (most common); as well as events
that can only be attached to a non-adjacent dependent
(more common than unattachable ones).

All of these models outperform all of the finite-state
ones considered. But this last group of models has one
advantage that the finite-state ones did not have: a var-
iable that declares which events are part of the harmonic
skeleton. Because this corresponds to a stipulation of
the basic blues form, these models should be compared
to a finite-state one that makes the same stipulation.
The optimal finite-state model from the section Finite-
state Models, PRM + FRM with tritone equivalence, was
refitted with an extra variable coding events in the har-
monic skeleton. This did substantially improve its per-
formance (BIC = 1508), but not to anywhere near the
level of the best CFG-based models.

Optimally reduced models. A reviewer suggests that the
procedure used above will tend to favor CFG models
because the baseline and finite-state models are con-
strained to have one parameter for every category of
root, metrical position, and/or N-gram that occurs in
the corpus. For this reason, I reran all of the models but
allowed them to drop any number of parameters post-
hoc based on their effect sizes.

Note that this adds significant complexity to the mod-
els. The original models fit optimal weights to a fixed
collection of parameters corresponding to the roots,
metrical positions, and N-grams found in the corpus.
These new models essentially add in the possibility of
grouping those roots, metrical positions, and N-grams
into “equivalence classes” post hoc based on frequency
of occurrence. This is a more difficult optimization
problem to solve than the original one, because the
implicit hypothesis space to be investigated (i.e., the set
of models to be considered) is much larger.

In general, models benefitted most from parameters
that split roots into four classes based on frequency of
occurrence and split metrical positions into four classes
based on frequency of chord changes. They tend to do
best with combinations of both types of parameters
(though not interactions). CFG models tended to ben-
efit most from including fewer of these parameters,
especially the metrical ones. Table 8 shows how reduc-
ing the number of parameters benefits various types of
finite-state and CFG models. Each row here corre-
sponds to one of the models discussed above: original
baselines, N-gram, CFG 1 (without depth-of-embed-
ding), and CFG 2 (with DOE). The last row introduces
a new class of N-gram model that drops a number of
bigram parameters to optimize for the BIC. The left-
most column shows the original BIC before reducing
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TABLE 8. BIC Values for Models With and Without Reduction
of Metrical and Root Parameters

Reductions
None Metrical Root Met+Rt
Baseline 1663 1616 1605 1542
Bigram 1554 1527 1504 1474
CFG1 1442 1427 1396 1377
CFG2 1432 1429 1389 1381
Red. Bigr. 1505 1445 1453 1393

Note: Baseline = root only or meter only; bigram = model with all root-motion
parameters; CFG1 = CFG with no depth-of-embedding parameters; CFG2 = CFG
that distinguishes least embedded (“skeletal”) events from other events; Red. Bigr. =
root-motion model with 3 most effective parameters.

the metrical and position parameters. The other col-
umns show the BIC scores after adding (or substituting
in) the reduced metrical position parameters, the
reduced root parameters, and both at once.

All of the models considered here are substantially
improved by discarding “extra” parameters. Interestingly,
finite-state models tend to retain more parameters, and
benefit more from them, than CFG models. This is pre-
sumably because the CFG approach already indirectly
captures some information about relative root frequency
(based on the number of rewrite rules required to attach
a particular root to the harmonic skeleton) and metrical
position (events that are structurally “high” in the syn-
tactic tree will tend to occupy prominent metrical posi-
tions). In particular, the benefit of depth-of-embedding
information completely vanishes when metrical factors
are added to the models.

Despite the fact that finite-state models have “more to
gain” from metrical and root information expressed
concisely, CFG models still perform better on the BIC.
I take this as a demonstration of the robustness of the
CFG results discussed in the previous subsection (CFG-
based models).

A ROBUSTNESS CHECK

The methods used here are novel and involve a some-
what idiosyncratic coding of “possible” events. For the
simpler models, there is a more straightforward way of
coding the corpus without using the notion “possible
but non-occurring chord change.” It is suggested by
Temperley’s (2010) corpus study of metrical structure,
where models are assessed using the conditional prob-
abilities of various outcomes under various ways of
grouping together the observations in the corpus. In the
current study, for instance, grouping observations
together using the variable “root-motion” allows us to
measure the overall probability of each type of root
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motion occurring in the corpus. Assigning to each
observation the probability associated with its root-
motion type allows us to estimate the likelihood of the
entire corpus. And measures of likelihood can be cou-
pled with counts of parameters to derive BIC values for
different types of models.

Using this approach, we don’t need to distinguish
between possible and impossible changes, nor code the
data in terms of occurring vs. non-occurring changes.
We can simply treat each metrical position in each song
as an observation, and assign a probability to each chord
in each metrical slot, whether it represents a change in
harmony or not. Different ways of grouping the data
(root motion, root only, scale degree, etc.) will result in
different likelihood estimates, corresponding to differ-
ent models of the corpus. I applied this procedure to
some of the simpler models from the section Evaluating
Models of the Blues, to check whether the results agree
with my novel regression-based methods.

In fitting baseline models, one difficulty immediately
arises: there is no equivalent to the original position-
only model in this framework. In the original coding, each
observation in the data was a chord change, and non-
changes were not included. The position-only model
therefore took a change in harmony as a given, and mod-
eled whether the attested changes were more likely in
some positions than others. The recoding used here
includes both changes in harmony and non-changes (pro-
longations), so the closest equivalent to the position-only
model will require a pair of parameters for each metrical
position: one parameter for “no chord change” and a sec-
ond parameter apportioning the probability of change
amongst the 11 other chords, without regard to their tonal
properties. This is the version of position-only used below.

The comparison between baseline models is shown in
Table 9. The crossed position x root model is assessed as
overly complex here, just as in the original comparison.
But in this new version the position model comes out
superior to the root-only one. This is readily explained
by the difference in coding discussed above. The posi-
tion model does better on the recoded corpus because
once a chord occurs, it’s relatively likely to continue
occurring. This probability is ignored by the original
coding of the data, which instead focuses in specifically
on cases where changes are relatively likely to occur. In
other words, metrical information is more useful than
root information for describing cases where chords
don’t change; but to describe cases where chords do
change, root information is more useful.

Table 10 assesses several more complex models that
incorporate information about chord changes: the root-
motion model, the unigram x root-motion (“scale

TABLE 9. Comparison of Baseline Models in the Recoded Corpus
Using Only Metrical Position and/or Chord Root

Model Fixed Effs Log Lik. BIC
Rt only 12 —1184 2447
Pos only 49 —1032 2387
Rt * pos 265 —601 2945

Note: Rt only = root relative to tonic; Pos only = metrical position; Rt*pos = every
root in every metrical position.

TABLE 10. Comparison of Baseline Models in the Recoded Corpus
Using N-grams

Model Fixed Effs Log Lik. BIC
RM 12 —1022 2122
Uni*RM 133 —941 2756
PRM*FRM 133 —929 2733

Note: RM = root motion between successive chords; Uni*RM = different root-
motion parameters for each different root (“scale degree”); PRM*FRM = interac-
tions between preceding and following root motions (trigrams).

degree”) model, and the preceding-root-motion x
following-root-motion (trigram) model. As in the orig-
inal comparison, the simple root-motion model is
judged as superior to the more complex interaction
models. Perhaps most importantly, it is judged as supe-
rior to the baseline models as well.

I take this procedure to show that, at least for models
that can be straightforwardly coded in Temperley’s
(2010) framework, the results are qualitatively very sim-
ilar to the novel regression method I've used here. The
lone exception is the comparison between baseline
models, where the different coding of the data and
resultant different nature of the position-only model
produce a different result from the original methods.

Discussion

The preceding sections outlined a theory of the blues,
showed that the basic intuitions behind it are sound,
formalized various implementations of that basic theory,
and compared their performance on modeling the har-
monic information in a corpus of blues forms. Several of
the conclusions reached along the way have theoretical
implications, and I discuss some of them in what follows.

ROOT-MOTION AND SCALE-DEGREE THEORIES
Amongst finite-state models of harmonic syntax, root-
motion models performed better than scale-degree
models. In root-motion models, recall, the primary
determinant of the probability of a chord sequence is



the intervals formed by the roots of successive chords in
that sequence. In scale-degree models, each chord may
have its own idiosyncratic pattern of characteristic root
motions. Tymoczko (2005) concludes, based on a corpus
of Bach chorales, that scale-degree models are superior,
so the current study is somewhat in tension with those
findings. One possible response would be to say that
jazz blues is just different than CPP music in this regard.
However, I think there are good reasons to doubt that
the scale-degree model is superior even for Tymoczko’s
corpus.

Tymoczko bases his conclusion on comparing a root-
motion model where each root motion is either well-
formed or ill-formed with a scale-degree model trained
on the corpus to assign a probability to each combina-
tion of preceding and following chord. Unsurprisingly,
the scale-degree model fits the data better. There are at
least two problems with this comparison, though. One
is that the root-motion model contains one free param-
eter (dominant vs. subdominant motion), while the
scale-degree model contains 36. Given that the root-
motion model can account for somewhere in the neigh-
borhood of 75% of data points, it seems clear that we’re
not getting an enormous return out of adding those
additional 35 parameters. This is why principled meth-
ods for model comparison are important. A second
problem with Tymoczko’s argument is that the bigram
model he ends up with, trained on the corpus, is not
a very good representation of scale-degree models as
a class. These models allow any combination of chords;
that is, any cell in the 2 x 2 transition matrix, to be
assigned any probability; while the alternative models
claim that certain cells ought to be grouped together.
But the transition matrix Tymoczko uses sets 27 of the
49 cells to 0 probability, and clearly displays a tendency
for chords on the diagonals representing movement
down by 5th and up by 2nd to be more frequent than
other root-motion classes.

One plausible explanation of this model is that it is
picking up on locally well-formed bigrams by mimicking
the root-motion model, and using its large collection of
superfluous parameters to “soak up” variance introduced
by non-local dependencies. Far from constituting an
argument for scale-degree models, I take this to be strong
evidence that they get something fundamentally wrong
even about the simplified diatonic corpus used by
Tymoczko. When an evaluation metric is used that takes
the complexity of models into account, as in the current
study, it becomes obvious that scale-degree models are
wildly overparameterized with respect to corpus data.

While root motion does seem to be a useful principle
for modeling bigrams, it should be noted that the
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optimal finite-state model in the current study is not
a “pure” root-motion model, in Tymoczko’s terms. It
benefits from the addition of inherent root frequencies
(unigrams). This does not make it a “scale-degree”
model in Tymoczko’s sense, because it does not posit
different characteristic motions for different roots, but it
could be seen as intermediate between a pure root-
motion theory and a scale-degree theory. One interpre-
tation of the model is that a chord’s inherent tonal
stability with respect to a key (Krumhansl, 1990; Ler-
dahl, 2001) or (equivalently) its perceptual distance
from the tonic modulates its frequency, largely indepen-
dent of principles of tonal motion.

N-GRAM CONSIDERATIONS

A type of mixture or “look-ahead” model that considers
both preceding and following chords was found to be
superior to both bigram and trigram models. Trigram
models were found to be far too complex for the data in
the corpus.

The inability to produce a useful trigram model of this
data is not surprising, as such models often require an
enormous amount of data, even when there are rela-
tively few states in the model. Even with a corpus that
is an order of magnitude larger than the current one,
Granroth-Wilding and Steedman (2014) report no
advantage for higher-order Markov models relative to
lower-order ones.

The comparison beween the pure bigram model and
the optimal look-ahead one is a bit harder to interpret.
One possibility, given that the best CFG models
included long-distance dependencies but also found
them to be relatively infrequent, is that the N-gram
comparison is making the best of a bad class of models.
The pure bigram model can’t capture long-distance
effects at all. The trigram model predicts they could be
pervasive. And the look-ahead model is able to capture
some limited information about trigram dependencies
without proliferating parameters for every conceivable
dependency.

One might object that the inability to fit a good tri-
gram model (or scale-degree one, for that matter) is due
to the relatively small size of the corpus. There are two
reasons why I don’t find this line of reasoning persua-
sive. One is that, no matter how large a corpus of blues
forms one could put together, some large number of
trigrams (e.g., b2-4-7) are likely to have a frequency
indistinguishable from 0. This is inherent to any
domain like musical harmony where the vast majority
of things that could conceivably happen never actually
do. This very basic property of the system suggests in
and of itself that lists of sequences of any length (that is,
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n-grams), are not the right place to start. The most
common method for dealing with this in natural lan-
guage processing is to use backoff models that “retreat”
to lower-order Markov processes in the face of sparse
data. This method has also had some success with musi-
cal corpora (e.g. Pearce & Wiggins 2004) and the general
concept bears an interesting complementarity to typical
CFG parsers, which first try to parse chords into local
groupings, and when they can’t, parse them as depen-
dent on more distant chords.

The second reason why a larger corpus may not be
more useful has to do with listeners’ actual exposure to
blues forms in the real world. While experienced musi-
cians, like the ones who composed the material in the
corpus, may be exposed to thousands of tokens of the
blues form over their lifetimes, they will not be exposed
to nearly as many distinct types. The forms contained in
The Real Book actually appear to me to be nearly com-
prehensive with respect to what kinds of harmonic ela-
borations one might find on the 12-bar blues form
within the framework of modern jazz, although of
course they don’t contain every possible local variation
in combination with every other one. Most jazz perfor-
mers learn the blues form from classic repertoire like
that considered here. In other words, this small corpus
is not obviously under-representing the type of musical
input that a blues learner receives.

FORMAL COMPLEXITY AND THE SYNTAX OF MUSIC

The BIC criterion used here finds that CFG models are
more efficient at describing the blues corpus than com-
parable finite-state ones. This conclusion holds whether
we use the BIC or the less stringent AIC, and whether or
not we allow the finite-state models to drop less impor-
tant parameters. Of course, this is not a standalone
proof that harmony must be context-free. The study
uses a novel methodology, which can be seen as a limi-
tation. And while the implementations of CFG models
here required fewer parameters than their finite-state
counterparts, they also require more complexity outside
of the regression models. Stating a CFG is more com-
plex than stating a bigram model. For bigram models,
one need only say how probable each bigram is. For
CFG models, one must determine the relevant rules and
the principles that govern their probability of being
applied. To implement a CFG also requires a form of
memory that a bigram model does not require. So there
is a tradeoff here: CFGs require more computational
complexity to be implemented, but are able to model
the data in the corpus in much more compressed form
than finite-state models. In language, this has been
taken as a fairly strong argument for CFGs or models

of greater complexity. But the really convincing evi-
dence from language, which generally involves either
semantic interpretation of syntactic structures or math-
ematical proofs that hinge on the recursive possibilities
of lanaguage being infinite, is unlikely to be replicated
for music, and is certain not to be found in corpora.

The Minimum Description Length (MDL) frame-
work mentioned in the section Corpora and Evaluation
Metrics in Tonal Harmony may offer a more principled
way of thinking about the tradeoff between the general
complexity of finding and formulating a CFG and the
specific number of parameters it needs to describe any
given data set (Griinwald, 1996). As Mavromatis (2009)
notes, however, the technical challenges in implement-
ing this approach are daunting. And in the end, the
assessed complexity of a CFG will depend on what the
researcher considers the hypothesis space for CFGs to
be like. Stine (2004) points out that MDL methods can
and should assess not only models but also the process
that led to those models, rewarding theoretically
grounded models for their a priori choice of predictors.
Using a procedure that searches amongst many CFG
alternatives for one that optimizes likelihood or some
other function will necessarily involve a huge number of
free parameters, and will be virtually guaranteed to out-
perform Markov models in terms of fit. In the current
study, I instead formulated a specific CFG on the basis
of previous research, voice-leading principles, and some
preliminary pencil-and-eraser efforts to see what such
a minimal grammar was capable of. While I don’t know
how to characterize this search procedure or hypothesis
space in MDL terms, it should be clear that it does not
involve as many free parameters as optimization across
probabilistic CFGs, and that the procedure need not
have resulted in better fit than optimal Markov models.
In fact, several of the very complex Markov models
considered here assign greater likelihood to the corpus
than any of the CFG models do.

Turning our attention to the details of the CFG models,
one immediate question is what kinds of non-local
dependency they are capturing that the finite-state ones
miss. Most of these dependencies pertain to chord
sequences that occur at the boundaries between higher-
level constituents. One common example is the type of
progression referred to as a “coordinated cadence” by
Granroth-Wilding and Steedman (2014). Consider the
sub-tree for Charlie Parker’s “Blues for Alice” shown in
Figure 12.

The bracketed bigram consists of VI followed by ii,
root motion by tritone. This type of root motion is
relatively infrequent. The CFG model embodies the
hypothesis that it is licensed in this case because the two
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FIGURE 12. Sub-tree for measures 8-10 of “Blues for Alice” by Charlie
Parker.

chords in question are followed by a V, which can take
both of the preceding chords as dependents. This in
turn suggests that the probability of such a bigram
should depend on which chord follows. Before a des-
cending 5th, as in Figure 12, tritone root motion occurs
about 3.6% of the time in the corpus. In all other con-
texts, it occurs less than half as frequently, 1.7% of the
time. A bigram model can’t capture this difference at all.
A trigram model can, but there are so many possible
dependencies of this type that it is hard to evaluate them
all without millions of training tokens. The look-ahead
model that was optimal in the finite-state comparison
finds a happy medium: it can take care of the general
rarity of tritone motion using one set of root-motion
parameters, then make “adjustments” for cases like this
using the second set.

Even if one could fine-tune one of the higher-order
Markov models to capture such generalizations very
accurately, however, such cases of adjacent dependents
are not limited to one level of embedding. Consider the
excerpt from Joe Henderson’s “Isotope” in Figure 13.

In this example, the bracketed bigram is an instance
of root-motion upwards by minor 3rd, which is also
relatively infrequent. But here, the licensing of the two
chords is not due to the immediately following one, but
in the case of the bIII, ultimately depends on a chain of
relations traced to the IV chord that appears four chords
later, which is part of the skeleton. This would require
a 6-gram model to capture perfectly, and needless to say
there is no chance of fitting such a model with a reason-
able amount of data. The CFG, on the other hand, inter-
prets the bIIT as well-formed so long as it can be traced
to a skeletal-level event through a chain of recursive rule
applications. Such examples are why the relatively sim-
ple CFG models were able to fit these complex data
relatively well compared to more complex finite-state
alternatives.

Tymoczko (2005) argues that his corpus is quite well
modeled in terms of bigrams and does not justify the
complexity of a hierarchical grammar. It is surely no
coincidence that the corpus on which this argument is
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bIII7 II7

FIGURE 13. Sub-tree for measures 1-6 of “Isotope” by Joe Henderson.

based is constructed in a way that systematically omits
most structures of the kind just discussed. In CPP
music, the use of chords with out-of-key notes (chro-
maticism) is highly constrained. But when it does
appear, it gives us strong clues about which events are
dependent on which other ones, precisely because chro-
matic chords tend to be licensed through particular
kinds of relationships to non-chromatic chords. This
means that the least ambiguous examples of depden-
dencies like the ones shown in (14-15), in CPP music,
are highly likely to involve chromaticism, in the form of
modulation, tonicization, or chromatic cadential
chords. Tymoczko, however, explicitly excludes all such
events from the corpus. This is presumably one reason
why the findings differ from the current study. The jazz
blues features such pervasive chromaticism that there
would be little left to model if it were excluded.

THE FORM OF THE GRAMMAR

The optimal CFG-based model considered here incor-
porates a parameter that penalizes long-distance attach-
ments. One way of thinking about this is as a pushdown
automaton with a cost associated with using its memory.
Given that the memory is what distinguishes this model
from a “plain” finite-state one, it follows that the “utter-
ances” it generates will tend to be of intermediate com-
plexity between a regular language and a full context-free
one. This is somewhat similar to the situation in lan-
guage. While most linguists agree that natural languages
are of at-least context-free complexity, it is entirely obvi-
ous that the human linguistic faculty does not utilize the
full power of context-free grammars in the way that
a machine can. Indeed, it’s fairly easy to come up with
even regular languages (generated by a finite-state
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machine) well beyond the complexity of anything
observed in the human domain (see Pullum & Scholz,
2009, for discussion and an illustration). And some of the
string features that distinguish context-free languages
from regular ones, such as the famous multiple center-
embedding construction (Chomsky & Miller, 1963),
clearly pose difficulties for human language processing
and are relatively rare in spoken language corpora. So the
claim here (and, really, anywhere in the linguistics and
cognitive science literature) is not that human languages
or musics are exactly like context-free languages or any
other level of the Chomsky hierarchy, but simply that
they can incorporate properties that distinguish one level
of complexity from another.

The optimal CFG model treats events in the harmonic
“skeleton” as more likely than those embedded under
that level, which is unsurprising given that those skeletal
events are a criterion for inclusion in the corpus. But the
model does not distinguish between events embedded
more or less deeply under that skeletal level. This is in
part because the relative rarity of deeply embedded
events is already coded into the database based on the
notion of “possible event” bootstrapped from the cor-
pus. If chords that require six levels of embedding are
relatively unlikely to occur in any given blues song, they
will be relatively unlikely to occur in the corpus at all.
They will therefore be unlikely to even be considered as
a possibility. What the modeling showed is that, when
the opportunity to insert a chord at a deeper level of
embedding arises, the probability of choosing to do so
does not depend on how many prior embeddings have
occurred. This is what we would expect if CFG rules are
associated in a straightforward way with a single prob-
ability of being applied.

The corpus contains events that cannot be assigned
a structural description by the CFG developed in the
section Testing Structural Hypotheses About the Blues
Form, although not a lot of them. This raises the ques-
tion of what is going on in such cases. One possibility is
that the CFG model is too restrictive, and needs to
include other rules. Given the relative scarcity of unat-
tachable events and the dangers of overgeneration, how-
ever, I would suggest an alternative interpretation. In the
face of overwhelming “top-down” evidence that one is
listening to a blues, one is willing to accommodate (or
compose) a few aberrant events that don’t straightfor-
wardly fit into the blues schema. An obvious example of
this type is Joe Henderson’s “Isotope,” which ends with
a “turnaround” that progresses to the next chorus’ ini-
tial tonic by repeated descending minor-3rd root
motion. This is not a typical harmonic device for the
blues, nor for the more classic jazz repertoire in general

(the song is from the 1960s). By the time this device
appears, however, the entire blues skeleton has been
outlined and the unusual root motion can be accom-
modated as an idiosyncratic way of moving towards the
initial landmark of the next chorus.

A reviewer suggests that this type of approach could be
modeled using a mixture of CFG parameters for “canon-
ical” structural relations and Markov parameters to “mop
up” the residue. Fitting a model of this type does mod-
estly improve performance on the BIC: a model identical
to the optimal CFG but with up to three bigram para-
meters used to distinguish between more and less likely
transitions to unattachable chords reduces the BIC from
1432 to 1427 (for the models in the section Optimally
Reduced Models with metrical and root information, this
addition reduces BIC from 1377 to 1375). This suggests
that any approach to composition in terms of hierarchical
rules should still allow for the possibility of assessing
surface transitions in cases where hierarchical structure
is unclear. More generally, the benefit of root-frequency
information (and to a much lesser extent, metrical infor-
mation) in these models suggests that hierarchical syntax
is clearly not the only thing that goes into composing
a blues form.

It was noted in the introduction that if musical syntax
is of at least context-free complexity, it would be more
similar to language than one might initially have thought.
The actual grammar proposed here, however, doesn’t
look much like a linguistic one. The CFG notation, using
rewrite rules that abstract over categories of terminal
elements, is often used in introductory linguistic classes
to model fragments of natural language grammars. This
notation suggests that only structures corresponding
to sequences of licit rewrite rules may be generated.
Contemporary work in generative syntax (broadly con-
strued), however, is generally not cast in these phrase-
structure terms. Instead, current theories tend to feature
relatively free structure building operations coupled with
constraints from lexical features and compositional
semantics that “filter” out ill-formed instances of partic-
ular structures (e.g., Chomsky, 1993; Jackendoft, 2002;
Pollard & Sag, 1994). If one is concerned with aligning
harmonic theories and linguistic ones, nothing in the
grammar proposed here is inconsistent with this view
of linguistic syntax. One would simply need to rewrite
the grammar as a system that can build a relatively
unconstrained set of structures, which are then subject
to being interpretable by harmonic principles like tritone
equivalence and descending fifth motion. Katz and
Pesetsky (2009) argue that even the far more complex
Lerdahl and Jackendoff (1983) theory of CPP musical
structure could be adapted to such a framework.



Conclusion

While the current study reached some fairly strong con-
clusions on its own terms, it is probably best viewed as
one in a collection of studies using diverse methods,
materials, and theories that all converge on the conclu-
sion that musical harmony is a complex, hierarchical
syntactic system (Johnson-Laird, 1991; Katz & Pesetsky,
2009 Lerdahl, 2001; Lerdahl & Jackendoff, 1983; Lerdahl
& Krumbhansl, 2007; Rohrmeier, 2011; Smith & Cuddy,
2003; Steedman, 1984, 1996). Most notable in this
respect is Granroth-Wilding and Steedman’s (2014)
corpus study of general jazz-standard harmony (includ-
ing the 12-bar blues form), which used a larger corpus,
a more broadly defined idiom, and very different meth-
ods for assessing the performance of generating models.
They nonetheless reach a very similar conclusion: the
regularities in the corpus are better captured by proba-
bilistic CFGs than by (hidden) Markov models. This is
reassuring, because it shows that the conclusion is
robust to a number of different analytical and method-
ological choices. The current study shows that it is
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possible to conduct such investigations using a single
song-form and a fairly small data set, as long as it is
supplemented with a way of characterizing “possible but
non-occurring” chord changes. The novel method
introduced here results in conclusions that are compa-
rable to the works mentioned above, which have
reached similar conclusions based on a range of meth-
ods including traditional harmonic analysis, perceptual
experiments, and corpus studies.
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Appendix A

Lead sheets in the preliminary corpus
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Song

Composer

Notes

African Flower
All Blues

Au Privave
Bessie’s Blues
Blue Comedy
Blue Monk

Blues for Alice
Blue Trane
Country Roads
Crescent
Eighty-one
Equinox

Exercise #3

Follow your Heart
Footprints

Freddie Freeloader
Gemini

Goodbye Pork Pie Hat
Hassan’s Dream
Henniger Flats
Interplay

Isotope

Israel

It’s a Raggy Waltz
Las Vegas Tango
Moon Germs

Mr. PC

Nostalgia in Times Square
Pfrancin’

Pussy Cat Dues
Semblance

Solar

Steps

Straight no Chaser
Swedish Pastry
Tough Talk
Walkin’

Walter L

West Coast Blues

Duke Ellington
Miles Davis
Charlie Parker
John Coltrane
Michael Gibbs
Thelonius Monk
Charlie Parker
John Coltrane
Gary Burton
John Coltrane
Miles Davis

John Coltrane
Pat Metheny
John McLaughlin
Wayne Shorter
Miles Davis
Jimmy Heath
Charles Mingus
Benny Golson
Gary Burton

Bill Evans

Joe Henderson
John Carisi

Dave Brubeck
Gil Evans

Joe Farrell

John Coltrane
Charles Mingus
Miles Davis
Charles Mingus
Keith Jarrett
Miles Davis
Chick Corea
Thelonius Monk
Barney Kessel
Wayne Henderson
Richard Carpenter
Gary Burton
Wes Montgomery

A Section only

Excluded from final
New Real Book used
Excluded from final
New Real Book used

Excluded from final

New Real Book used
Excluded from final

Excluded from final

New Real Book used

A section only

Excluded from final

No chord symbols in Real Book

New Real Book used
Excluded from final

Excluded from final
Excluded from final

Wikipedia suggests Miles Davis
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